Внутреннее сопротивление. Тема: определение эдс и внутреннего сопротивления источника тока

Лабораторная работа № 8

Тема: « Определение электродвижущей силы и внутреннего сопротивления источника тока ».

Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.

Оборудование: 1. Амперметр лабораторный;

2. Источник электрической энергии;

3. Соединительные провода,

4. Набор сопротивлений 2 Ом и 4 Ом;

5. Переключатель однополюсный; ключ.

Теория.

Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.

Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):

ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].

Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи .

Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r .

Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir .

Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir - напряжение на внутреннем участке цепи.

Таким образом, для участка цепи, содержащего ЭДС:

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.

ε и r можно определить опытным путем.

Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.

При последовательном соединении два соседних источника соединяются разноименными полюсами.

Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε 1 + ε 2 + ε 3

2 . Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батареи = r 1 + r 2 + r 3

Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε 1, а сопротивление r батареи = nr 1

3.

При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.

Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

Параллельно соединяют только источники с одинаковой ЭДС . Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.



1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε 1 = ε 2 = ε 3

2. Сопротивление батареи меньше, чем сопротивление одного источника r батареи = r 1 /n
3. Сила тока в такой цепи по закону Ома

Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.

Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.

Ход работы.

1. Начертите таблицу:

2. Рассмотрите шкалу амперметра и определите цену одного деления.
3. Составьте электрическую цепь по схеме, изображенной на рисунке 1. Переключатель поставить в среднее положение.


Рисунок 1.

4. Замкнуть цепь, введя меньшее сопротивление R 1 1 . Разомкнуть цепь.

5. Замкнуть цепь, введя большее сопротивление R 2 . Записать величину силы тока I 2 . Разомкнуть цепь.

6. Вычислить значение ЭДС и внутреннего сопротивления источника электрической энергии.

Закон Ома для полной цепи для каждого случая: и

Отсюда получим формулы для вычисления ε и r:

7. Результаты всех измерений и вычислений запишите в таблицу.

8. Сделайте вывод.

9. Ответьте на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Раскройте физический смысл понятия «электродвижущая сила источника тока».

2. Определить сопротивление внешнего участка цепи, пользуясь результатами полученных измерений и законом Ома для полной цепи.

3. Объяснить, почему внутреннее сопротивление возрастает при последовательном соединении аккумуляторов и уменьшается при параллельном в сравнении с сопротивлением r 0 одного аккумулятора.

4. В каком случае вольтметр, включенный на зажимы генератора, показывает ЭДС генератора и в каком случае напряжение на концах внешнего участка цепи? Можно ли это напряжение считать также и напряжением на концах внутреннего участка цепи?

Вариант выполнения измерений.

Опыт 1. Сопротивление R 1 =2 Ом, сила тока I 1 =1,3 А.

Сопротивление R 2 =4 Ом, сила тока I 2 =0,7 А.

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

8.5. Тепловое действие тока

8.5.1. Мощность источника тока

Полная мощность источника тока:

P полн = P полезн + P потерь,

где P полезн - полезная мощность, P полезн = I 2 R ; P потерь - мощность потерь, P потерь = I 2 r ; I - сила тока в цепи; R - сопротивление нагрузки (внешней цепи); r - внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 (R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ - электродвижущая сила (ЭДС) источника тока.

Полезная мощность - это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I - сила тока в цепи; U - напряжение на клеммах (зажимах) источника тока; R - сопротивление нагрузки (внешней цепи).

Мощность потерь - это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I - сила тока в цепи; r - внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

P полезн = 0,

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

P полн = ℰ 2 r ,

где ℰ - электродвижущая сила (ЭДС) источника тока; r - внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

R = r .

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн,

где P полн - полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой

r = R 1 R 2 ;

  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

I * = i 2 .

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

I 1 = ℰ R 1 + r ,

где ℰ - ЭДС источника тока; r - внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i - сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r }

и выполним деление уравнений:

i I 2 = 2 .

Отсюда следует:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r }

и выполним деление уравнений:

I 1 i = r R 1 + r .

Отсюда следует:

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

 Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой окружающей среде, поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

2014 г.

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи - это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

где r - внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

. (2)

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:
. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

и
(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы
, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

, (4)

где
- переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:
.

Закон Ома для полной цепи.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

. (5)

Из выражений (2), (4) и (5) получаем:


. (6)

Так как
, то

, (7)

или

. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод - для подключения ВУ-4М к гнезду «-»; желтые провода - для подключения к элементам планшета измерительных приборов; синие - для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:


. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Рис.1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r << R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника
, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.

. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :

. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что

(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Вычислите внутреннее сопротивление источника тока.

Таблица1.

, В

, В

I , А

, В

r , Ом

2 способ.

Сначала соберите экспериментальную установку, изображенную на рисунке 2.

Рис. 2.

Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора =5 Ом. Все данные заносятся в таблицу 2. , Ом

Контрольные вопросы :

    Внешний и внутренний участки цепи.

    Какое сопротивление называются внутренним? Обозначение.

    Чему равно полное сопротивление?

    Дайте определение электродвижущей силы (ЭДС). Обозначение. Единицы измерения.

    Сформулируйте закон Ома для полной цепи.

    Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

    Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. - с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.