Типовые математические модели. Теория массового обслуживания

Пример . АТС имеет k линий связи. Поток вызовов - простейший с интенсивностью λ в минуту. Среднее время переговоров составляет t минут. Время переговоров имеет показательное распределение. Найти: а) вероятность того, что все линии связи заняты; б) относительную и абсолютную пропускные способности АТС; в) среднее число занятых линий связи. Определить оптимальное число линий связи, достаточное для того, чтобы вероятность отказа не превышала α.
k = 5; λ = 0.6; t = 3.5, α = 0.04.
Решение . Исчисляем показатели обслуживания многоканальной СМО:
Интенсивность потока обслуживания:
μ = 1/3.5 = 0.29
1. Интенсивность нагрузки .
ρ = λ t обс = 0.6 3.5 = 2.1
Интенсивность нагрузки ρ=2.1 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
3. Вероятность, что канал свободен (доля времени простоя каналов).

Следовательно, 13% в течение часа канал будет не занят, время простоя равно t пр = 7.5 мин.
Вероятность того, что обслуживанием:
занят 1 канал:
p 1 = ρ 1 /1! p 0 = 2.1 1 /1! 0.13 = 0.26
заняты 2 канала:
p 2 = ρ 2 /2! p 0 = 2.1 2 /2! 0.13 = 0.28
заняты 3 канала:
p 3 = ρ 3 /3! p 0 = 2.1 3 /3! 0.13 = 0.19
заняты 4 канала:
p 4 = ρ 4 /4! p 0 = 2.1 4 /4! 0.13 = 0.1
заняты 5 канала:
p 5 = ρ 5 /5! p 0 = 2.1 5 /5! 0.13 = 0.0425 (вероятность того, что все линии связи заняты)
4. Доля заявок, получивших отказ .

Значит, 4% из числа поступивших заявок не принимаются к обслуживанию.
5. Вероятность обслуживания поступающих заявок .
В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:
p отк + p обс = 1
Относительная пропускная способность: Q = p обс.
p обс = 1 - p отк = 1 - 0.0425 = 0.96
Следовательно, 96% из числа поступивших заявок будут обслужены. Приемлемый уровень обслуживания должен быть выше 90%.
6. Среднее число занятых линий связи
n з = ρ p обс = 2.1 0.96 = 2.01 линии.
Среднее число простаивающих каналов .
n пр = n - n з = 5 - 2.01 = 3 канала.
7. Коэффициент занятости каналов обслуживанием .
K 3 = n 3 /n = 2.01/5 = 0.4
Следовательно, система на 40% занята обслуживанием.
8. Абсолютная пропускная способность .
A = p обс λ = 0.96 0.6 = 0.57 заявок/мин.
9. Среднее время простоя СМО .
t пр = p отк t обс = 0.0425 3.5 = 0.15 мин.
12. Среднее число обслуживаемых заявок .
L обс = ρ Q = 2.1 0.96 = 2.01 ед.

Для определения оптимального число линий связи, достаточное для того, чтобы вероятность отказа не превышала 0.04, воспользуемся формулой:

Для наших данных:

где
Подбирая количество линий связей, находим, что при k=6, p отк = 0.0147 < 0.04, p 0 = 0.12
Скачать решение

1. Коммерческая фирма занимается посреднической деятельностью по продаже автомобилей и осуществляет часть переговоров по 3 телефонным линиям. В среднем поступает 75 звонков в час. Среднее время предварительных переговоров справочного характера составляет 2 мин.

2. Пункт по ремонту квартир работает в режиме отказа и состоит из двух бригад. Интенсивность потока заявок λ, производительность пункта μ. Определить вероятность того, что оба каналы свободны, один канал занят, оба канала заняты, вероятность отказа, относительную и абсолютную пропускные способности, средне число занятых бригад.

3. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Многоканальная СМО с ограниченной длиной очереди

2. В мини-маркет поступает поток покупателей с интенсивностью 6 покупателей в 1 мин., которых обслуживают три контролера-кассира с интенсивностью 2 покупателя в 1 мин. длина очереди ограничена 5 покупателями.

3. На плодоовощную базу в среднем через 30 мин. прибывают автомашины с плодоовощной продукцией. Среднее время разгрузки одной машины составляют 1.5 ч. Разгрузку производят две бригады. На территории базы у дебаркадера могут находиться в очереди в ожидании разгрузки не более 4 автомашин.

4. На автомойку в среднем за час приезжают 9 автомобилей, но если в очереди уже находятся 4 автомобиля, вновь подъезжающие клиенты, как правило, не встают в очередь, а проезжают мимо. Среднее время мойки автомобиля составляет 20 мин., а мест для мойки всего два. Средняя стоимость мойки автомобиля составляет 70 руб. Определите среднюю величину потери выручки автомойки в течение дня.

5. Магазин получает овощи из теплиц. Автомобили с грузом прибывают с интенсивностью λ машин в день. Подсобные помещения позволяют обрабатывать и хранить товар, привезенный m автомобилями. В магазине работают n фасовщиков, каждый из которых в среднем может обрабатывать товар с одной машины в течении t обсл. часов. Продолжительность рабочего дня при сменной работе составляет 12 часов. Определить емкость подсобных помещений при заданной вероятности Р* обсл. полной обработки товаров.

6. Имеется автозаправочная станция с 2-мя колонками. В очереди не может быть больше 3-х машин. Интенсивность и среднее время заправки равны 2.1 и 0.55. Найти вероятность простоя системы.
Решение :
Интенсивность потока обслуживания равна μ = 1/0.55 = 1.82. Отсюда, интенсивность нагрузки составит ρ = λ t обс = 2.1 0.55 = 1.16. Заметим, что интенсивность нагрузки ρ=1.16 показывает степень согласованности входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.
Поскольку 1.16<2, то процесс обслуживания будет стабилен.
Вероятность простоя системы выражается следующей формулой:


Следовательно, 28% в течение часа канал будет не занят, время простоя равно t пр = 0.28*60 мин. = 16.9 мин.

Многоканальная СМО с неограниченной очередью

1. Построить две модели многоканальной системы массового обслуживания – с бесконечной и ограниченной очередью. Вычислить Р 0 – вероятность простаивания всех каналов обслуживания, n w – среднее число клиентов, ожидающих обслуживания, t w – среднее время ожидания обслуживания, W – вероятность обязательного пребывания в очереди.

2. В расчетном узле магазина самообслуживания работают 3 кассы. интенсивность входного потока составляет 5 покупателей в минуту. интенсивность обслуживания каждого контролера-кассира составляет 2 покупателя минуту.

Рекомендации к решению задачи: здесь n = 3; λ = 5 ед. в мин.; μ = 2 ед. в мин.
В качестве количества заявок в очереди можно указать, например, m = 4. тогда будут рассчитаны соответствующие вероятность появления данных заявок.

3. В аудиторскую фирму поступает простейший поток заявок на обслуживание с интенсивностью λ = 1,5 заявки в день. Время обслуживания распределено по показательному закону и равно в среднем трем дням. Аудиторская фирма располагает пятью независимыми бухгалтерами, выполняющими аудиторские проверки (обслуживание заявок). Очередь заявок не ограничена. Дисциплина очереди не регламентирована. Определите вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме.

4. В мастерской по ремонту холодильников работает n мастеров. В среднем в течение дня поступает в ремонт λ холодильников. Поток заявок пуассоновский. Время ремонта подчиняется экспоненциальному закону распределения вероятностей, в среднем в течение дня при семичасовом рабочем дне каждый из мастеров ремонтирует μ холодильников.
Требуется определить: 1) вероятность того, что все мастера свободны от ремонта холодильников, 2) вероятность того, что все мастера заняты ремонтом, 3) среднее время ремонта одного холодильника, 4) в среднем время ожидания начала ремонта для каждого холодильника, 5) среднюю длину очереди, которая определяет необходимое место для хранения холодильника, требующего ремонта, 6) среднее число мастеров, свободных от работы.

Задача 1. На диспетчерский пульт поступает поток заявок, который является потоком Эрланга второго порядка. Интенсивность потока заявок равна 6 заявок в час. Если диспетчер в случайный момент оставляет пульт, то при первой же очередной заявке он обязан вернуться к пульту. Найти плотность распределения времени ожидания очередной заявки и построить ее график. Вычислить вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут. Решение . Поскольку поток Эрланга второго порядка является стационарным потоком с ограниченным последействием, то для него справедлива формула Пальма

где f1(θ)- плотность распределения вероятностей для времени ожидания первого ближайшего события;
λ - интенсивность потока;
- порядок потока;
(θ) - функция распределения вероятностей для времени между двумя соседними событиями потока Эрланга - го порядка (Э).
Известно, что функция распределения для потока Э имеет вид

. (2)

По условиям задачи поток заявок является Эрланговским порядка =2. Тогда из (1) и (2) получим
.
Из последнего соотношения при λ=6 будем иметь

f1(θ)=3е-6θ(1+6 θ), θ≥0. (3)

Построим график функции f1(θ) . При θ <0 имеем f1(θ) =0 . При θ =0 , f1(0)=3 . Рассмотрим предел

При вычислении предела для раскрытия неопределенности типа использовано правило Лопиталя . По результатам исследований строим график функции f1(θ) (Рис. 1).


Обратим внимание на размерности времени в тексте задачи: для интенсивности это заявки в час, для времени-минуты. Перейдем к одним единицам времени: 10 мин=1/6 час, 20 мин=1/3 час. Для этих значений можно вычислить f1(θ) и уточнить характер кривой


Эти ординаты указаны на графике над соответствующими точками кривой.
Из курса теории вероятностей известно, что вероятность попадания случайной величины Х в отрезок [α, β] численно равна площади под кривой плотности распределения вероятностей f(х) . Эта площадь выражается определенным интегралом

Следовательно, искомая вероятность равна

Этот интеграл легко вычисляется по частям, если положить
U=1+6θ и dV=е-6θ . Тогда dU=6 и V= .
Используя формулу получим

Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28.

Задача 2. Дисплейный зал имеет 5 дисплеев. Поток пользователей простейший. Среднее число пользователей, посещающих дисплейный зал за сутки, равно 140. Время обработки информации одним пользователем на одном дисплее распределено по показательному закону и составляет в среднем 40 минут. Определить, существует ли стационарный режим работы зала; вероятность того, что пользователь застанет все дисплеи занятыми; среднее число пользователей в дисплейном зале; среднее число пользователей в очереди; среднее время ожидания свободного дисплея; среднее время пребывания пользователя в дисплейном зале. Решение. Рассматриваемая в задаче СМО относится к классу многоканальных систем с неограниченной очередью. Число каналов =5. Найдем λ-интенсивность потока заявок: где (час.) - среднее время между двумя последовательными заявками входящего потока пользователей. Тогда польз./час.

Найдем -интенсивность потока обслуживания: , где М[Т обсл.]=40 мин=0,67 часа - среднее время обслуживания одного пользователя одним дисплеем,

тогда польз/час.

Таким образом, классификатор данной системы имеет вид СМО (5, ∞; 5,85; 1,49).
Вычислим коэффициент загрузки СМО . Известно, что для СМО такого класса стационарный режим существует, если отношение коэффициента загрузки системы к числу каналов меньше единицы. Находим это отношение
.
Следовательно, стационарный режим существует. Предельное распределение вероятностей состояний вычисляется по формулам


Поскольку =5, имеем

Вычислим Р*- вероятность того, что пользователь застанет все дисплеи занятыми. Очевидно, она равна сумме вероятностей таких событий: все дисплеи заняты, очереди нет (р5); все дисплеи заняты, один пользователь в очереди (р6); все дисплеи заняты, два пользователя в очереди (р7) и так далее. Поскольку для полной группы событий сумма вероятностей этих событий равна единице, то справедливо равенство

Р*=р5+р6+р7+…=1 - ро - р1 - р2 - р3 - р4.

Найдем эти вероятности: ро =0,014; р1 =3,93*0,014; р2 =7,72*0,014; р3 =10,12*0,014; р4 =9,94*0,014.
Вынося за скобки общий множитель, получим
Р*=1-0,0148*(1+3,93+7,72+10,12+9,94)=1-0,014*32,71=1-0,46=0,54.
Используя формулы для вычисления показателей эффективности? найдем:

  • 1. среднее число пользователей в очереди

2. среднее число пользователей в дисплейном зале

3. среднее время ожидания свободного дисплея

4. среднее время пребывания пользователя в дисплейном зале

Ответ: стационарный режим работы дисплейного зала существует и характеризуется следующими показателями Р* =0,54; пользователя; пользователя; ; .

Задача 3. В двухканальную систему массового обслуживания (СМО) с отказами поступает стационарный пуассоновский поток заявок. Время между поступлениями двух последовательных заявок распределено по показательному закону с параметром λ=5 заявок в минуту. Длительность обслуживания каждой заявки равна 0,5 мин. Методом Монте-Карло найти среднее число обслуженных заявок за время 4 мин. Указание: провести три испытания. Решение. Изобразим статистическое моделирование работы заданной СМО с помощью временных диаграмм. Введем следующие обозначения для временных осей:
Вх -входящий поток заявок, здесь ti -моменты поступления заявок; Ti -интервалы времени между двумя последовательными заявками. Очевидно, что ti =ti -1 i .
К1-первый канал обслуживания;
К2-второй канал обслуживания; здесь жирные линии на временной оси обозначают интервалы занятости канала. Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2.
Если заняты оба канала, то заявка покидает СМО необслуженной.
Вых ОБ-выходящий поток обслуженных заявок.
Вых ПТ-выходящий поток потерянных заявок за счет отказов СМО (случай занятости обоих каналов).
Статистические испытания продолжаются в течение временного интервала . Очевидно, что любое превышение времени tmax влечет за собой сброс заявки в выходящий поток Вых ПТ. Так на рис. 3 заявка №10, пришедшая в систему в момент t10 , не успевает обслужиться до момента tmax , так как t10+Тобсл.>tmax . Следовательно, она не принимается свободным каналом К1 на обслуживание и сбрасывается в Вых ПТ, получая отказ.


Рис. 3

Из временных диаграмм видно, что необходимо научиться моделировать интервалы Т i . Применим метод обратных функций. Поскольку случайная величина Тi распределена по показательному закону с параметром λ =5, то плотность распределения имеет вид f (τ)=5е-5τ . Тогда значение F(Ti) функции распределения вероятностей определяется интегралом

.

Известно, что область значений функции распределения F (T ) есть отрезок . Выбираем из таблицы случайных чисел число и определяем Т i из равенства , откуда . Однако, если . Поэтому можно сразу получать из таблицы случайных чисел реализации . Следовательно,
е-5Т i = ri , или –5Т i = lnri , откуда . Результаты вычислений удобно заносить в таблицу.
Для проведения испытания №1 были взяты случайные числа из приложения 2, начиная с первого числа первой строки. Далее выборка осуществлялась по строкам. Проведем еще два испытания.
Обратите внимание на выборку случайных чисел из таблицы приложения 2, если в испытании №1 последнее случайное число для заявки №16 было 0,37 (первое случайное число во второй строке), то испытание №2 начинается со следующего за ним случайного числа 0,54. Испытание №2 содержит последним случайное число 0,53 (пятое число в третьей строке). Следовательно, третье испытание начнется с числа 0,19. Вообще в пределах одной серии испытаний случайные числа из таблицы выбираются без пропусков и вставок по определенному порядку, например, по строкам.

Таблица 1. ИСПЫТАНИЕ №1

№ зая-вки
i

Сл. число
ri

-ln ri
Тi

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1
Таблица 2 ИСПЫТАНИЕ №2

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

Таблица №3 ИСПЫТАНИЕ №3

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1

Таким образом, по результатам трех испытаний число обслуженных заявок составило соответственно: х1 =9, х2 =9, х3 =8. Найдем среднее число обслуженных заявок:

Ответ: среднее число заявок, обслуженных СМО за 4 минуты, равно 8,6(6).

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.

4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:

где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью

Система (в нашем случае вычислительная система) изменяет свои состояния под действием потока заявок (заданий) -поступающие заявки (задания) увеличивают очередь. Число заданий в очереди плюс число заданий, которые обрабатываются ЭВМ (т.е. число заданий в системе), - это характеристика состояния системы . Очередь уменьшается, как только одна из ЭВМ заканчивает обработку (обслуживание) задания. Тотчас же на эту ЭВМ из очереди поступает стоящее впереди (или по какому-либо другому приоритету) задание и очередь уменьшается. Таким образом, число заданий в системе растет благодаря потоку заданий , а уменьшается благодаря окончанию обслуживания с помощью ЭВМ. Устройства обработки заявок в теории СМО называют каналами обслуживания. В этой теории поток заданий (заявок на обслуживание) характеризуется интенсивностью Л. - средним количеством заявок, поступающих в единицу времени (скажем, в час). Среднее время обслуживания (обработки) одного задания /о, определяет так называемую интенсивность потока обслуживания ц,  

Такой подход позволит определить число бригад при различной интенсивности потока и продолжительности обслуживания.  

В универсальном магазине (в отделе самообслуживания) на выходе планируется разместить кассы сканирования для приема от покупателей денег за товары. Интенсивность потока покупателей равна 6 чел. /мин. Интенсивность обслуживания составляет 1,4 чел./мин. Допустимая длина очереди не должна превышать трех человек.  

Учитывая, что увеличение числа заявок (заданий) в системе (т.е. номера состояния) происходит под воздействием их потока с интенсивностью /, а уменьшение - под воздействием потока обслуживания с интенсивностью г, изобразим размеченный граф состояний нашей системы (рис. 3.3).  

Наиболее общей является ситуация, когда интенсивность потока покупателей носит случайный характер, то есть подчиняется распределению Пуассона , а время обслуживания подчиняется закону обратного экспоненциального распределения . Не будем заниматься выводом формул, отметим лишь, что  

В связи с тем что потоки заявок в системе рассчитаны для средних суток, то расчеты длины очереди L и среднего времени ожидания обслуживания Тож, как и другие качественные параметры, будут сделаны неверно, так как интенсивность потока в различные часы суток различна и может меняться до 5 раз. Конечно, можно рассчитать эти параметры за каждый час отдельно, но и это будет неверно, так как СМО будет находиться в постоянном переходном процессе. В этом случае входной поток будет нестационарным и с последействием, так как математическое ожидание числа заказов в единицу времени будет меняться в 3- 5 раз, а число заказов, поступивших, например, в 18 часов, зависит от того, сколько их было фактически за каждый предыдущий час.  

Пример 3.1. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания (ЕО) для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока автомобилей Л = 1,0 (автомобиль в час). Средняя продолжительность обслуживания - 1,8 часа. Поток автомобилей и поток обслуживании являются простейшими.  

Параметр потока обслуживания л и приведенная интенсивность потока автомобилей р определены в примере 3.2  

Заметим, что подобный расчет требуется не только при проектировании системы обслуживания он необходим при каждом серьезном изменении интенсивностей потоков заявок, их маршрутизации, трудоемкости обработки, требований к качеству обслуживания . Таким образом, необходимыми расчетными средствами должны быть оснащены не только проектировщики, но и управляющий персонал реально эксплуатируемых систем обслуживания.  

О Пример. В пункте химчистки имеется три аппарата для чистки. Интенсивность потока посетителей А, = 6 (посетителей в час). Интенсивность обслуживания посетителей одним аппаратом i = 3 (посетителей в час). Среднее количество посетителей, покидающих очередь, не дождавшись обслуживания, VBS (посетитель в час). Найти абсолютную пропускную способность пункта.  

Расчет производится на один год с учетом сложившихся в базисном году среднесуточного потока заявок на ремонт и интенсивности обслуживания 1 скважины.  

Величину р называют приведенной плотностью потока требований или интенсивностью нагрузки, р - это среднее число требований, приходящееся на среднее время обслуживания одного требования.  

СМОЬ СМО2 и СМО3 представляют собой пг, п2- и п3- канальные системы с неограниченной очередью и интенсивностью потоков обслуживании // , ju2 и //з, соответственно. Время повторного обслуживания заявки в  

Одноканальная СМО с ожиданием. Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью X. Интенсивность потока обслуживания равна ц (т. е. в среднем непрерывно занятый канал будет выдавать ц обслуженных заявок). Длительность обслуживания - случайная величина , подчиненная показательному закону распределения. Поток обслуживании является простейшим пуассо-новским потоком событий . Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.  

Производительность канала -интенсивность простейшего потока обслуживании П0б (среднее число заявок, обслуживаемое каналом за единицу времени при непрерывной работе) in П0б = ju = onst 100 заявок/день  

Суть упрощений при описании реального предпринимательского процесса моделью СМО состоит в следующем. Во-первых, все однотипные запросы и волеизъявления дотребителей о продаже им того или иного товара или оказании некоторых конкретных услуг представляются в виде так называемого потока заявок на обслуживание. Во-вторых, сложный процесс заключения коммерческого договора купли-продажи , оказания возмездных услуг и их исполнения коммерческим предприятием моделируется аналогично в виде потока обслуживания. При этом модельным аналогом конкретного работника предприятия, который обслуживает потребителя, или конкретного аппарата самообслуживания (колонка АЗС, телефонный канал АТС и т.п.) является так называемый канал обслуживания . В-третьих, вводят допущение о том, что все существенные характеристики как потока заявок, так и потока обслуживания сосредоточены только в единственном их параметре, который называют интенсивностью потока . При этом под интенсивностью потока понимают число событий в соответствующем потоке в единицу времени. Например, под интенсив-  

Пример 3.4. Пусть -канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (п = 3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач , поступающих на ВЦ, имеет интенсивность Л = 1 задаче в час. Средняя продолжительность обслуживания 7обсл =1,8 час. Поток заявок на решение задач и поток обслуживания этих заявок являются простейшими.  

Полученные выше результаты относились к ситуации, когда интенсивность k потока заявок на восстановление не зависит от числа k находящихся в ремонтном органе необслуженных заявок. В противном случае говорят о замкнутых системах обслуживания. При ограниченном числе R источников заявок обычно считают, что А/ = А(Л - А). Методы расчета марковских систем подобного вида хорошо известны (формулы Энгсета). Рассчитывать немарковские системы значительно сложнее. Особенно труден анализ системы, где интенсивность отказов зависит от объема ЗИПа s (запас s рассматривается как холодный резерв, не подверженный отказам). Между тем этот случай достаточно типичен. Если считать, что в рабочей системе установлены R источников заявок, то интенсивность отказов будет оставаться постоянной и равной АЛ, пока в системе восстановления не скопится k > s заявок. Тогда интенсивность потока заявок начнет убывать по закону А = X. Методика расчета подобной СМО вида M/G/l/(R + s) была предложена автором в статье , оказалась весьма громоздкой и к тому же неприменимой для многоканальных систем восстановления. Однако ап-проксимационные методы, описанные в главе 3, без труда обобщаются и на этот случай. Здесь мы отметим особенности его реализации  

Найдем способ расчета стационарных вероятностей состояний одношналъной системы с указанной зависимостью интенсивности потока от числа заявок в ней и произвольным распределением длительности обслуживания B(t).  

Сам К.Эрланг изучал эту задачу в следующих предположениях поток требований - пуассоновский с интенсивностью J длительность обслуживания распределена по показательному закону , причем средняя продолжительность обслуживания. При названных предположениях К.Эрланг показал, что если число обслуживающих устройств равно /7 , то при стационарном пуас-соновском

При решении задач управления, в том числе и управления войсками, часто возникает ряд однотипных задач:

  • оценка пропускной способности направления связи, железнодорожного узла, госпиталя и т. п.;
  • оценка эффективности ремонтной базы;
  • определение количества частот для радиосети и др.

Все эти задачи однотипны в том смысле, что в них присутствует массовый спрос на обслуживание. В удовлетворении этого спроса участвует определенная совокупность элементов, образующая систему массового обслуживания (СМО) (рис. 2.9).

Элементами СМО являются:

  • входной (входящий) поток требований (заявок) на обслуживание;
  • приборы (каналы) обслуживания;
  • очередь заявок , ожидающих обслуживания;
  • выходной ( выходящий) поток обслуженных заявок;
  • поток не обслуженных заявок;
  • очередь свободных каналов (для многоканальных СМО).

Входящий поток - это совокупность заявок на обслуживание. Часто заявка отождествляется с ее носителем. Например, поток неисправной радиоаппаратуры, поступающий в мастерскую объединения, представляет собой поток заявок - требований на обслуживание в данной СМО.

Как правило, на практике имеют дело с так называемыми рекуррентными потоками, - потоками, обладающими свойствами:

  • стационарности;
  • ординарности;
  • ограниченного последействия.

Первые два свойства мы определили ранее. Что касается ограниченного последействия, то оно заключается в том, что интервалы между поступающими заявками являются независимыми случайными величинами.

Рекуррентных потоков много. Каждый закон распределения интервалов порождает свой рекуррентный поток . Рекуррентные потоки иначе называют потоками Пальма.

Поток с полным отсутствием последействия, как уже отмечалось, называется стационарным пуассоновским. У него случайные интервалы между заявками имеют экспоненциальное распределение:

здесь - интенсивность потока.

Название потока - пуассоновский - происходит от того, что для этого потока вероятность появления заявок за интервал определяется законом Пуассона:

Поток такого типа, как отмечалось ранее, называют также простейшим. Именно такой поток предполагают проектировщики при разработке СМО. Вызвано это тремя причинами.

Во-первых , поток этого типа в теории массового обслуживания аналогичен нормальному закону распределения в теории вероятностей в том смысле, что к простейшему потоку приводит предельный переход для потока, являющегося суммой потоков с произвольными характеристиками при бесконечном увеличении слагаемых и уменьшении их интенсивности. То есть сумма произвольных независимых (без преобладания) потоков с интенсивностями является простейшим потоком с интенсивностью

Во-вторых , если обслуживающие каналы (приборы) рассчитаны на простейший поток заявок, то обслуживание других типов потоков (с той же интенсивностью) будет обеспечено с не меньшей эффективностью.

В-третьих , именно такой поток определяет марковский процесс в системе и, следовательно, простоту аналитического анализа системы. При других потоках анализ функционирования СМО сложен.

Часто встречаются системы, у которых поток входных заявок зависит от количества заявок, находящихся в обслуживании. Такие СМО называют замкнутыми (иначе - разомкнутыми ). Например, работа мастерской связи объединения может быть представлена моделью замкнутой СМО. Пусть эта мастерская предназначена для обслуживания радиостанций, которых в объединении . Каждая из них имеет интенсивность отказов . Входной поток отказавшей аппаратуры будет иметь интенсивность :

где - количество радиостанций, уже находящихся в мастерской на ремонте.

Заявки могут иметь разные права на начало обслуживания. В этом случае говорят, что заявки неоднородные . Преимущества одних потоков заявок перед другими задаются шкалой приоритетов.

Важной характеристикой входного потока является коэффициент вариации :

где - математическое ожидание длины интервала;

Среднеквадратическое отклонение случайной величины (длины интервала) .

Для простейшего потока

Для большинства реальных потоков .

При поток регулярный, детерминированный.

Коэффициент вариации - характеристика, отражающая степень неравномерности поступления заявок.

Каналы (приборы) обслуживания . В СМО могут быть один или несколько обслуживающих приборов (каналов). Согласно с этим СМО называют одноканальными или многоканальными.

Многоканальные СМО могут состоять из однотипных или разнотипных приборов. Обслуживающими приборами могут быть:

  • линии связи;
  • мастера ремонтных органов;
  • взлетно-посадочные полосы;
  • транспортные средства;
  • причалы;
  • парикмахеры, продавцы и др.

Основная характеристика канала - время обслуживания. Как правило, время обслуживания - величина случайная.

Обычно практики полагают, что время обслуживания имеет экспоненциальный закон распределения:

где - интенсивность обслуживания, ;

Математическое ожидание времени обслуживания.

То есть процесс обслуживания - марковский, а это, как теперь нам известно, дает существенные удобства в аналитическом математическом моделировании.

Кроме экспоненциального встречаются -распределение Эрланга, гиперэкспоненциальное, треугольное и некоторые другие. Это нас не должно смущать, так как показано, что значение критериев эффективности СМО мало зависят от вида закона распределения вероятностей времени обслуживания.

При исследовании СМО выпадает из рассмотрения сущность обслуживания, качество обслуживания .

Каналы могут быть абсолютно надежными , то есть не выходить из строя. Вернее, так может быть принято при исследовании. Каналы могут обладать конечной надежностью . В этом случае модель СМО значительно сложнее.

Очередь заявок . В силу случайного характера потоков заявок и обслуживания пришедшая заявка может застать канал (каналы) занятым обслуживанием предыдущей заявки. В этом случае она либо покинет СМО не обслуженной, либо останется в системе, ожидая начало своего обслуживания. В соответствии с этим различают:

  • СМО с отказами;
  • СМО с ожиданием.

СМО с ожиданием характеризуются наличием очередей. Очередь может иметь ограниченную или неограниченную емкость: .

Исследователя обычно интересуют такие статистические характеристики, связанные с пребыванием заявок в очереди:

  • среднее количество заявок в очереди за интервал исследования;
  • среднее время пребывания (ожидания) заявки в очереди. СМО с ограниченной емкостью очереди относят к СМО смешанного типа.

Нередко встречаются СМО, в которых заявки имеют ограниченное время пребывания в очереди независимо от ее емкости. Такие СМО также относят к СМО смешанного типа.

Выходящий поток - это поток обслуженных заявок, покидающих СМО.

Встречаются случаи, когда заявки проходят через несколько СМО: транзитная связь , производственный конвейер и т. п. В этом случае выходящий поток является входящим для следующей СМО. Совокупность последовательно связанных между собой СМО называют многофазными СМО или сетями СМО .

Входящий поток первой СМО, пройдя через последующие СМО, искажается и это затрудняет моделирование . Однако следует иметь в виду, что при простейшем входном потоке и экспоненциальном обслуживании (то есть в марковских системах) выходной поток тоже простейший . Если время обслуживания имеет не экспоненциальное распределение, то выходящий поток не только не простейший, но и не рекуррентный.

Заметим, что интервалы между заявками выходящего потока, это не то же самое, что интервалы обслуживания. Ведь может оказаться, что после окончания очередного обслуживания СМО какое-то время простаивает из-за отсутствия заявок. В этом случае